InterCap: Joint Markerless 3D Tracking of Humans and Objects in Interaction

Goal

Markerless reconstruction of 3D humans and interacting objects from RGB-D cameras

Problem

- 1. Humans are intrinsically complex articulated creatures, estimating accurate human pose is challenging even with special devices like dense markers
- 2. Occlusion between the subject and the object during interaction is heavy and common, making tracking hard
- 3. Previous marker/IMUs-based solutions cannot easily be applied in daily scenarios, thus are not so practical

Key Observation

Body-object interactions provide strong constraints about how the human and the object move

¹ Yinghao Huang ¹ Omid Tehari ¹ Michael J. Black ² Dimitrios Tzionas

Max Planck Institute for Intelligent Systems, Tübingen, Germany

Results

²University of Amsterdam

InterCap: Optimization Approach

-	
$E = \frac{1}{T} \sum_{\text{frame } t} \left[E_O(\Xi_t; \mathcal{S}_t, \mathcal{D}_t) + E_B(\beta^*, \Theta_t, \Psi_t, \Gamma_t; \mathcal{J}_{est}) \right] +$	Contour & Landmarks
$\frac{1}{T} \sum_{\text{frame } t} \left[E_{\mathcal{P}}(\Theta_t, \beta^*, \Gamma_t) + E_{\mathcal{C}}(\beta^*, \Theta_t, \Psi_t, \Gamma_t, \Xi_t, M) \right] +$	- Prior loss & Contact
$\frac{\lambda_{\mathcal{G}}}{T} \sum_{\text{frame } t} \left[E_{\mathcal{G}}(\beta^*, \Theta_t, \Psi_t, \Gamma_t) + E_{\mathcal{G}'}(\Xi_t, M) \right] +$	Above-ground term
$\frac{\lambda_{\mathcal{Q}}}{T} \sum_{\text{frame } t} \left[Q_t * E_{\mathcal{C}}(\beta^*, \Theta_t, \Psi_t, M', \Xi_t) \right] +$	Smoothness constraint
$\lambda_{\mathcal{S}} E_{\mathcal{S}}(\Theta, \Psi, \Gamma, A; \beta^*, T) +$	
$\lambda_{\mathcal{A}} E_{\mathcal{A}}(\Xi, T, M),$	

		•	
mr	bar	ISO	ns

Comparisons —							
Name	# of	Natural Appear	Moving Objects	Accurate	With	Artic.	References
HumanEva [52] Human3.6M [23] AMASS [35] GRAB [54] 3DPW [36] GTA-IM [5] SAIL-VOS [20]	Seq. 56 165 11265 1334 60 119 201	Appear.	Objects X X X X	Motion	Image X X	Hands X X X X	 [1] SMPL: a skinned multi-person linear model, Loper et al., SIGGRAPH Asia 2015 [2] Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image, Bogo et al., ECCV 2016 [3] End-to-end recovery of human shape and pose, Kanazawa et al., CVPR 2018 [4] Expressive body capture: 3d hands, face, and body from a single image, Pavlakos, CVPR 2019 [5] BEHAVE: Dataset and Method for Tracking Human Object Interactions, Bhatnagar et al., CVPR 2022 [6] Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human
PiGraphs [51] PROX [15] RICH [21] BEHAVE [3] InterCap (ours)	63 20 142 321 223		× × ×			× × × ×	 motion, Sigal et al., IJCV 2010 [7] Resolving 3D human pose ambiguities with 3D scene constraints, Hassan et al., CVPR 2019 [8] Learning motion priors for 4d human body capture in 3d scenes, Zhang et al, ICCV 2021 [9] Human-aware object placement for visual environment reconstruction, Yi et al., CVPR 2022 [10] GRAB: A dataset of whole-body human grasping of objects, Taheri et al., ECCV 2020

UNIVERSITY MSTERDAM

Objective Function

Code & Data: intercap.is.tue.mpg.de